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Abstract. We study the effect of anisotropic noise on target registration error
(TRE) by using a tracked and calibrated stylus tip as the fiducial registration
application. We present a simple, efficient unscented Kalman filter algorithm that
is suitable for fiducial registration even with a small number of fiducials. We also
derive an equation that predicts TRE under anisotropic noise. The predicted TRE
values are shown to closely match the simulated TRE values achieved using our
UKF-based algorithm.

1 Introduction

Many least-squares solutions have been proposed for the problem of fiducial (paired-
point) registration. The use of least-squares assumes that one set of points is noise free
and the other set of points is contaminated with isotropic, zero mean, independent,
identically distributed (iid) Gaussian noise.

Optical tracking systems that sense points of infrared light are commonly used in
commercial navigated surgical systems. These systems measure coordinate reference
frames (CRFs), which are essentially a set of infrared emitting/reflecting fiducial mark-
ers, that are rigidly attached to the tracked object. The measurement precision is typi-
cally worse in the viewing direction of the cameras for such tracking systems. Khadem
and colleagues [1] found that the jitter in the measured position of a static target was
anisotropic with the greatest deviation occurring in the viewing direction of the track-
ing system. Their results showed an anisotropy as large as a factor of five or more when
using a Polaris tracking system with a passive target.

Ohta and Kanatani [2] described an algorithm designed to accommodate anisotropic,
non-identical Gaussian noise in both the model and measurement coordinate systems.
This algorithm was used in a modified version of the ICP algorithm [3].

Pennec and Thirion [4] used an extended Kalman filter as part of a framework for
registration using points and frames. Their approach accommodated anisotropic noise
in both sets of points to be registered.

Fitzpatrick and colleagues [5] derived an expression for fiducial target registration
error (TRE) in k-dimensions. Target registration error is simply the magnitude ‖r −
r′‖ where r is the expected location of a target point and r′ is the registered location
the target point. Their derivation was performed assuming zero-mean, isotropic, iid
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Gaussian noise. West and Maurer [6] described how to use these results to design targets
for optically tracked surgical instruments.

Ma and Ellis [7] presented analytic expressions based on a spatial stiffness model
for TRE for both fiducial and surface-based registration. Their expression for fiducial
TRE was identical to that published by [5]; thus, their approach was only applicable to
isotropic Gaussian iid noise. It can be shown that the stiffness matrices they derived are
based on first-order Taylor series approximations of rotation and translation [8].

Moghari and Abolmaesumi [9] used the unscented Kalman filter (UKF) to solve
the fiducial registration problem and estimate the covariance of the state parameters
[tx, ty, tz , θx, θy, θz]T , where [tx, ty, tz]T is the translation and [θx, θy, θz]T is the vec-
tor of ZY X Euler angles. Given a sufficient number of markers, their algorithm was
able to estimate the mean squared TRE and the distribution of TRE. Their work appears
to be an improvement over [4] with regard to estimating TRE and its distribution [10].

We present three significant contributions over prior art in this article. The first con-
tribution is a comparison of fiducial registration algorithms when there is anisotropic,
identically distributed noise in the fiducial measurements. The second contribution is
the derivation of an equation that predicts the expected root mean square (RMS) TRE
for fiducial registration with anisotropic noise. The third contribution is the introduction
of a simple, UKF-based fiducial registration algorithm that, as we demonstrate, achieves
the TRE predicted by our derived equation. We use simulations of a pointing stylus and
an image registration problem to demonstrate the effects of anisotropic noise on TRE.

2 Method

2.1 UKF Fiducial Registration Algorithm

A conventional filtering algorithm processes observations as they are made available,
and then does not reconsider them; in this way, it is able to efficiently perform a se-
quential update of the state estimate. The UKF algorithm described in [9] is unusual
in that it continually reprocesses previous observations by appending new observa-
tions to the vector of old observations, lengthening the observation vector with each
marker observation; this negates the advantage of efficient state estimate updates. Our
UKF algorithm processes all fiducial marker observations in one update. The state
model is xi+1 = xi + vi where xi = [tx, ty, tz, θx, θy, θz]Ti is the vector of regis-
tration parameters (identical to that in [9]) at time i and vi is the noise associated with
the uncertainty of the state estimate. We assume that vi is drawn from a zero-mean
Gaussian with covariance matrix Vi. Our observation model for n fiducial markers is

yi =

[ g1

...
gn

]
=

⎡
⎣ R(θx,θy,θz)if1+[tx,ty,tz]Ti

...
R(θx,θy,θz)ifn+[tx,ty,tz]Ti

⎤
⎦ + ni where gj is the jthmeasured fiducial

location, fj is the jthmodel fiducial location, R(θx, θy, θz)i is the ZY X Euler rotation
matrix computed using the estimated rotation state at time i, [tx, ty, tz]T is the estimated
translation at time i, and ni is the measurement noise.

We can compute a good initial state estimate x0 using a least-squares algorithm such
as Horn’s method [11]. One iteration of the UKF is performed producing a new esti-
mate of the registration parameters and parameter covariances. The estimate is accurate
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enough that it can be corrected by the filter even though Horn’s method is known to be
suboptimal under anisotropic noise.

We initialize the state parameter covariance V0 with a reasonable guess based on the
expected measurement noise magnitude. All simulations in this article used a diagonal
matrix for V0 with elements of (1mm)2 for translation and (1rad)2 for rotation.

2.2 Spatial Stiffness Analysis for Anisotropic Noise

The model of fiducial registration published in [7] treated each noise-free fiducial lo-
cation as an end point of a zero-length linear spring. Noise in the registered marker lo-
cation was considered as a small extension of the spring. The springs had no preferred
direction, which was appropriate for isotropic noise. We modify their model to accom-
modate anisotropic noise by replacing the single spring with three directional springs
with appropriate spring constants. In general, the spring constants and directions are re-
lated to the principal components of the noise covariance matrix for the fiducial marker;
the spring constants are the reciprocals of the eigenvalues of the covariance matrix, and
the directions are the eigenvectors of the covariance matrix. If the covariance matrix
is diagonal, then the spring constants are the reciprocals of the variances; that is, we
weight the stiffness of each spring in inverse proportion to the noise variance just as we
would in a typical weighted least-squares solution. For the purposes of this article, we
will assume that we are working with fiducials measured in the optical tracker coordi-
nate system so that the noise covariance matrix for the marker locations is diagonal.

Our derivation of the anisotropic stiffness matrix follows that of [7]. Let the jthfi-
ducial be fj = [xj , yj, zj ]T . If fj is perturbed by a small rotation R(θx, θy, θz) and
translation t = [tx, ty, tz]T , its new position is gj = R(θx, θy, θz)fj + t. The potential
energy stored in the springs associated with the marker can be written as Uj = 1

2 (gj −
fj)T diag(kxj , kyj , kzj )(gj −fj) where diag(kxj , kyj , kzj ) is the 3×3 diagonal matrix
of spring constants. The Hessian Hj of Uj evaluated at zero displacement is

Hj = H(Uj; θx = θy = θz = tx = ty = tz = 0)

=

⎡
⎢⎢⎢⎢⎣

kxj
0 0 0 kxj

zj −kxj
yj

0 kyj
0 −kyj

zj 0 kyj
xj

0 0 kzj
kzj

yj −kzj
xj 0

0 −kyj
zj kzj

yj kzj
y2

j +kyj
z2

j −kzj
xjyj −kyj

xjzj

kxj
zj 0 −kzj

xj −kzj
xjyj kzj

x2
j+kxj

z2
j −kxj

yjzj

−kxj
yj kyj

xj 0 −kyj
xjzj −kxj

yjzj kyj
x2

j+kxj
y2

j

⎤
⎥⎥⎥⎥⎦

The stiffness matrix for n markers is K =
∑n

j=1 Hj =
[ A B
BT D

]
where A, B, and D

are 3 × 3 block matrices. Following [7] we can write the mean squared TRE as

TRE2(r) ∝ 1
σ1

+ 1
σ2

+ 1
σ3︸ ︷︷ ︸

translational component

+ 1
μeq,1

+ 1
μeq,2

+ 1
μeq,3︸ ︷︷ ︸

rotational component

(1)

where r is the target location, σ1, σ2, σ3 are called the principal translational stiffnesses
and μeq,1, μeq,2, μeq,3 are called the equivalent principal rotational stiffnesses. The stiff-
ness quantities were first described by Lin and colleagues [12]; refer to [12] for details
on computing the principal stiffnesses. It was previously shown that the rotational and
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translational stiffnesses are independent for fiducial registration [7]; thus, we are justi-
fied in using addition in quadrature of the two components of TRE in Equation 1. Only
the rotational component of Equation 1 depends on the target location r.

Equation (1) only gives the mean squared TRE to within a constant factor because
the spring constants were scaled by the inverse of the variances. In the case of identical
noise in all of the fiducials, we can recover the constant factor because the magnitude of
the translational component can be computed in a different way. Let the identically dis-
tributed, zero-mean noise have covariance matrix N = diag(n2

x, n2
y, n2

z). Let the mean
of the n noisy marker locations be F̄ = [F̄x, F̄y, F̄z ]T . The mean of the noise-free
marker locations is the expected value E[F̄]. The expected squared translation magni-
tude of the mean marker location is simply the expected magnitude of F̄ − E[F̄]

E[δ2] = E[‖F̄ − E[F̄]‖2]
= E[(F̄x − E[F̄x])2] + E[(F̄y − E[F̄y])2] + E[(F̄z − E[F̄z ])2]
= var(F̄x) + var(F̄y) + var(F̄z)
= 1

n

(
n2

x + n2
y + n2

z

)
. (2)

Equation (1) can now be rewritten to give the estimated squared TRE as

TRE2(r) = f
(

1
σ1

+ 1
σ2

+ 1
σ3

+ 1
μeq,1

+ 1
μeq,2

+ 1
μeq,3

)
, f =

1
n (n2

x+n2
y+n2

z)� 1
σ1

+ 1
σ2

+ 1
σ3

� (3)

2.3 Experimental Validation

Consider an optical tracking system and a calibrated digitizing stylus like the one shown
in Figure 1. Suppose that the stylus is oriented so that its z = 0 plane is perpendicular
to the viewing direction of the optical tracker (i.e., directly facing the tracker).

In our simulations, we rotated the stylus about its x axis from −45◦ to 45◦ in incre-
ments of 15◦. At each angle of rotation, we generated 10,000 sets of measured marker
locations for the CRF where each measured marker location gj was the model marker
location fj rotated by the angle of rotation and contaminated with zero-mean, addi-
tive Gaussian noise of covariance Ni = N = diag(n2

xc
, n2

yc
, n2

zc
) where nxc = nyc

(isotropic noise in the camera viewing plane), nzc = snxc for some scalar s ≥ 1
(anisotropic noise in the viewing direction), and n2

xc
+ n2

yc
+ n2

zc
= c for a constant

value c = 0.12 + 0.12 + 0.32mm2 (constant total noise magnitude). All noise vari-
ances are given in the tracking camera coordinate system. The model marker locations
were registered to the noisy measured marker locations using Horn’s method (Horn),
Ohta and Kanatani’s (Ohta) method, and our UKF method (UKFreg). For each regis-
tration, we computed TRE using the tip of the stylus as the target. We also computed
the expected mean squared TRE for each trial of the UKF method using the calculation
described by [9] (UKFest). At each angle, we computed TRE using Equation (3).

We performed the simulations with two different stylus CRFs. The first CRF was
identical to that shown in Figure 1. The second CRF also used four markers but in a tetra-
hedral arrangement; the marker coordinates in units of millimeters were [45, 25, 0]T ,
[0, −50, 0]T , [−45, 25, 0]T , and [0, 0, 50]T .
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Fig. 1. (Left) Model of the pointing stylus used in our simulations; all units are in millimeters.
(Right) Optical tracking system and stylus orientation used in our simulations. Measurement
noise variance in the viewing direction −zc is typically greater than those in the viewing plane.

Fig. 2. Simulation results for CRF 1. (Left) TRE versus rotation angle for isotropic noise, s = 1.
(Middle) TRE versus rotation angle for anisotropic noise, s = 5. (Right) Square root of the
largest principal component of the tip error covariance matrix for anisotropic noise s = 3.

We also performed registration simulations based on identifying fiducials in CT im-
ages where the slice spacing is much greater than the pixel size. The Ilizarov frame
registration problem described by Ma and colleagues [13] was studied. Only the prox-
imal ring was used, to which we applied a 30◦ rotation about the x-axis. We used
uniformly distributed noise in the range of [−0.5, 0.5] mm for the x and y directions
and [−2.5, 2.5] for the z direction. TRE was computed on a regular grid with 20 mm
spacing in the plane of the ring.

3 Results

The RMS TRE as a function of the stylus rotation angle is shown in Figure 2 for CRF 1.
Note that the TRE curves are identical and constant for isotropic noise; the RMS value
of 0.68 mm matches the value predicted by West and Maurer [6, Equation (16)].

We computed the covariance of the tip registration error vector pθ − (R̂ip0 + t̂i)
where pθ is the true position of the tip at rotation angle θ, R̂i and t̂i are the estimated
rotation and translation for trial i, and p0 = [0, −200, 0]T is the model tip location in
millimeters. We then computed the eigenvalues of the covariance matrix (the decorre-
lated variances); the square root of the two largest eigenvalues (the two largest “standard
deviations”) as a function of rotation angle are also shown in Figure 2.

The RMS TRE computed from the simulation using UKFreg, UKFest, and Equa-
tion (3) are shown in Figure 3. UKFest tended to overestimate TRE, whereas Equa-
tion (3) predicted a value that agreed surprisingly well with the simulation results of
UKFreg. We computed the confidence intervals for the RMS TRE values of UKFreg;
we used the BCa bootstrap [14] to deal with the asymmetry of the TRE distributions.
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Fig. 3. Root mean squared TRE versus stylus rotation angle for CRF 1. (Left) TRE estimated us-
ing UKFest and simulated TRE values. (Right) TRE estimated using Equation (3) and simulated
TRE values.

Fig. 4. Root mean squared TRE versus stylus rotation angle for CRF 2. (Left) Simulated values
of RMS TRE for s = 3. (Right) Predicted values of RMS TRE.

Fig. 5. Ilizarov frame experiment results. (Left) Difference in TRE between Horn’s method and
UKFreg. (Right) Difference in TRE between UKFest and UKFreg.

We found that the value given by Equation (3) was always within the 95% confidence
interval for isotropic noise. For anisotropic noise, Equation (3) gave a value that was
slightly below the lower limits of the confidence intervals; however, the difference be-
tween the RMS value and Equation (3) was never more than 7% of the RMS value.

The results for the second stylus CRF configuration are shown in Figure 4. The TRE
behavior for this stylus was quite uniform over the range of rotation angle. UKFreg
had the best TRE performance, but there was dramatically less difference between the
registration algorithms.
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Fig. 6. (Left) Tip TRE is worst when the stylus is oriented to face the direction of greatest noise
anisotropy (typically the viewing direction of the camera) because such an orientation results in
the greatest expected rotational error. (Right) Tip TRE is minimized by orienting the stylus face
away from the camera viewing direction which minimizes the contribution of the rotational error.

The results for the Ilizarov frame example are shown in Figure 5. UKFreg always
produced a smaller RMS TRE value than Horn’s method. UKFest predicted the simu-
lation results of UKFreg to within 12% of the RMS TRE value even though we used
uniformly distributed noise.

4 Discussion and Conclusion

All three estimators used in the simulations had identical worst performances when
the CRF of the stylus was directly facing the tracking system (rotation angle of 0◦).
This result is easily explained with reference to Figure 6. Aligning the CRF to face the
tracking system produces the situation that allows for the greatest expected rotational
error which causes a displacement of the apparent tip location that is proportional to
the length of the stylus. Clearly, the stylus orientation that produces the least expected
rotation error is that where the face of the CRF is perpendicular to the viewing direction;
of course, in practice the CRF would not be visible to the camera in this orientation.

Horn’s method, which assumes isotropic noise, performed the worst in our simula-
tions. Ohta and Kanatani’s method, which is optimal with respect to their definition of
rotation covariance, performed better than Horn’s method but not as well as our UK-
Freg algorithm; also, it did not produce results consistent with our theoretical prediction
given by Equation (3). We are continuing to investigate the cause of this discrepancy.

We implemented the method, UKFest, described by Moghari and Abolmaesumi
[9,10] to estimate TRE. UKFest uses the state covariance estimate of the UKF to predict
TRE. We found that it overestimates TRE when using a small number of fiducials.
This result was not surprising because the estimated covariance is unlikely to be very
accurate given the small number of fiducials and the single step update we used.

We were pleasantly surprised by the degree of similarity between the predicted RMS
TRE of Equation (3) and the simulated RMS TRE of our UKF algorithm. The su-
perior performance of our algorithm in terms of TRE versus the other algorithms we
tested combined with the strong agreement to Equation (3) leads us to speculate that
our algorithm is almost optimal under conditions of identically distributed, anisotropic
noise. Note that UKFreg does not differ substantially from the EKF algorithm of [4].
Arguably, the UKF is easier to implement because it does not require the computation
of Jacobians. We have demonstrated that UKFreg achieves the TRE predicted by our
stiffness model, and we expect that the EKF algorithm would perform similarly.



On Fiducial TRE in the Presence of Anisotropic Noise 635

The simulations using the CRF with one out of plane marker demonstrated the su-
periority of this design over the flat CRF. West and Maurer [6] showed that a regular
tetrahedron was the ideal configuration of fiducials for isotropic noise. Our results show
that such a configuration is also preferred over a flat CRF for anisotropic noise.

We have studied the case where a registration algorithm is used to match a model of
a target to the measurements made by a tracking system. An alternative method is to
use a Kalman-type filter to perform the tracking, which removes the need for an explicit
registration algorithm. The UKF we used is easily adapted to such a purpose.

In summary, we have demonstrated that anisotropic noise can have a significant ef-
fect on TRE, especially when a suboptimal registration algorithm is used. Our registra-
tion algorithm works well in the presence of anisotropic noise, and it produces results
consistent with a theoretical model of fiducial registration TRE.
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